Medicilon Logo
|
search icon search icon language icon contact icon menu icon
Medicilon Logo
|
search icon close search icon language icon contact icon menu icon
logo icon CN
Contact Us
Close Button
Message
Back To Top
Online Message×
Click switch
Close Button
News information

New Finding on Synapse Destruction May Open Path to Alzheimers Therapy

2015-11-30
|
Page View:

    Scientists at the University of New South Wales in Australia have pinpointed how connections in the brain are destroyed in the early stages of Alzheimer’s disease, in a study which it is hoped will help in the development of treatments for the debilitating condition.  They believe their work opens up a new avenue for research on possible treatments for the degenerative brain condition.

 

    “One of the first signs of Alzheimer’s disease is the loss of synapses—the structures that connect neurons in the brain,” noted study leader, Vladimir Sytnyk, Ph.D., of the UNSW School of Biotechnology and Biomolecular Sciences. “Synapses are required for all brain functions, and particularly for learning and forming memories. In Alzheimer’s disease, this loss of synapses occurs very early on, when people still only have mild cognitive impairment, and long before the nerve cells themselves die. We have identified a new molecular mechanism which directly contributes to this synapse loss, a discovery we hope could eventually lead to earlier diagnosis of the disease and new treatments.”

 

    The team studied a specific protein in the brain, neural cell adhesion molecule 2 (NCAM2), one of a family of molecules that physically connects the membranes of synapses and help stabilize these long lasting synaptic contacts between neurons. The researchers paper (“Aβ-dependent reduction of NCAM2-mediated synaptic adhesion contributes to synapse loss in Alzheimer’s disease”) is published in Nature Communications.

 

    Using post-mortem brain tissue from people with and without the condition, they discovered that synaptic NCAM2 levels in the part of the brain known as the hippocampus were low in those with Alzheimer’s disease. They also showed in mice studies and in the laboratory that NCAM2 was broken down by beta-amyloid, which is the main component of the plaques that build up in the brains of people with the disease.

 

    “Our research shows the loss of synapses is linked to the loss of NCAM2 as a result of the toxic effects of beta-amyloid,” pointed out Dr. Sytnyk. “It opens up a new avenue for research on possible treatments that can prevent the destruction of NCAM2 in the brain.” 

Relevant newsRelevant news