As of Beijing time The data is from a third-party organization and is only for reference.
For actual information, please refer to:www.eastmoney.com
Address: 470 Wildwood Ave, Woburn, MA 01801 (America)
Tel: +1(626)986-9880
Address: Allia Future Business Centre Kings Hedges Road Cambridge CB4 2HY, UK
Tel: 0044 7790 816 954
Email: marketing@medicilon.com
Address: No.585 Chuanda Road, Pudong New Area, Shanghai (Headquarters)
Postcode: 201299
Tel: +86 (21) 5859-1500 (main line)
Fax: +86 (21) 5859-6369
© 2023 Shanghai Medicilon Inc. All rights reserved Shanghai ICP No.10216606-3
Shanghai Public Network Security File No. 31011502018888 | Website Map
Business Inquiry
Global:
Email:marketing@medicilon.com
+1(626)986-9880(U.S.)
0044 7790 816 954 (Europe)
China:
Email: marketing@medicilon.com.cn
Tel: +86 (21) 5859-1500
When certain types of cancer spread, they seem to prefer particular organs in the body, a choosiness that led Stephen Paget to propose the “seed and soil” hypothesis. This hypothesis, now more than 100 years old, suggests that different organs are somehow more receptive to certain types of cancer, just as different soils seem to allow some seeds, but not others, to find purchase.
While this hypothesis is as expressive as ever, it still lacks detail. It doesn’t suggest what mechanisms might drive organ-specific metastasis, or organotropic metastasis. The hypothesis, however, is being taken farther by researchers based at Weill Cornell Medicine. These researchers suggest that the old seed-and-soil idea, which sounds as haphazard as the dispersal of seeds by uncultivated plants, could be updated to describe a process that is more directed.
Essentially, a tumor metastasis may proceed the way settlers cultivate new land. First, scouts and pioneers are dispatched to identify fertile spots and develop basic infrastructure. Then, once the ground is prepared, settlers establish new communities.
In this scenario, the scouts are tumor exosomes. These exosomes are released by tumors in the millions, and they carry samples of the tumors’ proteins and genetic content. They fuse preferentially with cells at specific locations, and they ensure that recipient organs are prepared to host the tumor cells they represent.
Most important, this updated view of organotropic metastasis includes a mechanism to explain how exosomes are directed to specific organs. The exosomes, it turns out, are outfitted with particular sets of integrins, proteins that serve as a kind of destination label.
Supportive findings appeared October 28 in the journal Nature, in an article entitled, “Tumour exosome integrins determine organotropic metastasis.” This article described how the Weill Cornell researchers, in collaboration with scientists from the Memorial Sloan Kettering Cancer center and the Spanish National Cancer Research Centre (CNIO), examined exosomes from mouse and human lung-, liver-, and brain-tropic tumor cells. These exosomes were seen to fuse preferentially with resident cells at their predicted destinations, namely, lung fibroblasts and epithelial cells, liver Kupffer cells, and brain endothelial cells.
“Exosome proteomics revealed distinct integrin expression patterns, in which the exosomal integrins α6β4 and α6β1 were associated with lung metastasis, while exosomal integrin αvβ5 was linked to liver metastasis,” wrote the authors. “Targeting the integrins α6β4 and αvβ5 decreased exosome uptake, as well as lung and liver metastasis, respectively.”
In other words, the study demonstrated the importance of integrins in metastatic nesting by blocking specific integrins in tumors that metastasize to specific organs. For example, when integrins were blocked in breast cancer, metastasis to lungs was reduced. Similarly, when integrins were blocked in pancreatic cancer, metastasis to liver was reduced.
In addition, the study showed that a tumor could be “tricked” by changing the integrin destination code of its exosomes. For example, a tumor that would normally go to the bones could be directed to the lungs instead.
“The integrin-specific signature that we identified may have significant value clinically, serving as a prognostic indicator for metastasis to specific organ sites,” said senior author David Lyden, M.D., Ph.D., the Stavros S. Niarchos Professor in Pediatric Cardiology and a professor of pediatrics and of cell and developmental biology at Weill Cornell Medicine. “Instead of waiting for late-stage metastasis, we can now initiate preventative strategies at an earlier point of disease progression with the hope of preventing its spread. This really changes the treatment paradigm.”