As of Beijing time The data is from a third-party organization and is only for reference.
For actual information, please refer to:www.eastmoney.com
Address: 470 Wildwood Ave, Woburn, MA 01801 (America)
Tel: +1(626)986-9880
Address: Allia Future Business Centre Kings Hedges Road Cambridge CB4 2HY, UK
Tel: 0044 7790 816 954
Email: marketing@medicilon.com
Address: No.585 Chuanda Road, Pudong New Area, Shanghai (Headquarters)
Postcode: 201299
Tel: +86 (21) 5859-1500 (main line)
Fax: +86 (21) 5859-6369
© 2023 Shanghai Medicilon Inc. All rights reserved Shanghai ICP No.10216606-3
Shanghai Public Network Security File No. 31011502018888 | Website Map
Business Inquiry
Global:
Email:marketing@medicilon.com
+1(626)986-9880(U.S.)
0044 7790 816 954 (Europe)
China:
Email: marketing@medicilon.com.cn
Tel: +86 (21) 5859-1500
An energy sensing enzyme can potentially become a therapeutic target for future cancer drugs as it is responsible for sensing the available supply of GTP — an energy source that fuels the uncontrolled growth of cancer cells, new research has found.
An international study team formed by a University of Cincinnati (UC) cancer researcher found that the enzyme PI5P4K (phosphatidylinositol-5-phosphate 4-kinase) acts like the arrow on a fuel gauge.
Atsuo Sasaki, Ph.D., assistant professor in the division of hematology oncology at the UC College of Medicine, Toshiya Senda, Ph.D., professor at the High Energy Accelerator Research Organization in Tsukuba, Japan, and colleagues showed that PI5P4Kβ (phosphatidylinositol-5-phosphate 4-kinase-β) acts like the arrow on a fuel gauge. The enzyme senses and communicates via a second messenger the amount of GTP fuel that is available to a cell at any given time. Until now, the molecular identity of a GTP sensor has remained unknown.
“Energy sensing is vital to the successful proliferation of cancer cells,” says Dr. Sasaki. “A large amount of GTP is required in rapidly dividing cells, and cells need to know that the fuel is available to them. If we can interfere with the ability of PI5P4Kβ to sense fuel availability and communicate that information, we may be able to slow or halt the growth of cancers, including the aggressive brain cancer glioblastoma multiforme and cancers that have metastasized to the brain.”
The study (“The Lipid Kinase PI5P4Kβ Is an Intracellular GTP Sensor for Metabolism and Tumorigenesis”), published in Molecular Cell, is Dr. Sasaki’s first to address PI5P4Kβ as a molecular sensor of GTP concentration. Initially, he and his team reportedly faced skepticism regarding the existence of GTP energy-sensing.
GTP is one of two energy molecules used by cells. The other is adenosine triphosphate. ATP handles the bulk of a cell’s energy requirements, while GTP is required for protein synthesis and is a signaling molecule that helps direct processes within the cell. When GTP levels are increased and utilized as fuel by cancer cells, its ability to perform its primary goals is compromised.
Dr. Sasaki and his team identified PI5P4Kβ as a GTP sensor by demonstrating, in a laboratory setting its ability to bind to GTP and by showing, at the atomic level by X-ray structural analysis, the molecular mechanism by which it recognizes GTP. They then designed PI5P4Kβ mutant cells that were unable to sense GTP concentration and, as a result, impaired the ability of PI5P4Kβ to promote tumor growth.
His next step is to use both pharmacological and molecular approaches that target PI5P4Kβ in a cell culture and in animal tumor models.
“By unveiling PI5P4Kβ’s role as a GTP sensor, we now have a potential new therapeutic target for patients,” explains Dr. Sasaki. “If we can find drugs that stop PI5P4Kβ from acting as the fuel indicator, we could get these aggressive and tragic cancers into energy-depleted status.”