As of Beijing time The data is from a third-party organization and is only for reference.
For actual information, please refer to:www.eastmoney.com
Address: 470 Wildwood Ave, Woburn, MA 01801 (America)
Tel: +1(626)986-9880
Address: Allia Future Business Centre Kings Hedges Road Cambridge CB4 2HY, UK
Tel: 0044 7790 816 954
Email: marketing@medicilon.com
Address: No.585 Chuanda Road, Pudong New Area, Shanghai (Headquarters)
Postcode: 201299
Tel: +86 (21) 5859-1500 (main line)
Fax: +86 (21) 5859-6369
© 2023 Shanghai Medicilon Inc. All rights reserved Shanghai ICP No.10216606-3
Shanghai Public Network Security File No. 31011502018888 | Website Map
Business Inquiry
Global:
Email:marketing@medicilon.com
+1(626)986-9880(U.S.)
0044 7790 816 954 (Europe)
China:
Email: marketing@medicilon.com.cn
Tel: +86 (21) 5859-1500
Inflammation is a good thing when it’s fighting off infection, but too much can lead to autoimmune diseases or cancer. In efforts to dampen inflammation, scientists have long been interested in CC chemokine receptor 2 (CCR2).
Scientists at the Skaggs School of Pharmacy and Pharmaceutical Sciences at the University of California San Diego have determined the 3D structure of CC chemokine receptor 2 (CCR2), a protein that sits on the surface of immune cells sensing and transmitting inflammatory signals that spur cell movement toward sites of inflammation, simultaneously bound to two inhibitors. Understanding how these molecules fit together may better enable pharmaceutical companies to develop anti-inflammatory drugs that bind and inhibit CCR2 in a similar manner.
At present, as the pathogenesis of inflammatory and immunological diseases is unclear, there are few effective therapeutic drugs available in clinical practice. In such a context, the appropriate preclinical research techniques and models are required to help companies and researchers further develop and evaluate new drugs. Our Preclinical Pharmacodynamics Department has been deeply involved in this field for years, developing reliable animal-based efficacy evaluation models aimed at different targets and pathways, thus facilitating the clinical transformation of new drugs.
CCR2 and associated signaling molecules are known to play roles in a number of inflammatory and neurodegenerative diseases, including multiple sclerosis, asthma, diabetic nephropathy, and cancer. Many drug companies have attempted to develop drugs that target CCR2, but none have yet made it to market.
Key Protein Mediating Inflammatory Response Discovered
Antibody Offers New Approach to Treating Inflammatory Diseases
Mitochondrial Protein Alterations May Underlie Inflammatory Myopathies
“So far drugs that target CCR2 have consistently failed in clinical trials,” said Tracy Handel, Ph.D., professor in the Skaggs School of Pharmacy. “One of the biggest challenges is that, to work therapeutically, CCR2 needs to be turned ‘off’ and stay off completely, all of the time. We can’t afford ups and downs in its activity. To be effective, any small-molecule drug that inhibits CCR2 would have to bind the receptor tightly and stay there. And that’s difficult to do.”
Dr. Handel led the study (“Structure of CC Chemokine Receptor 2 with Orthosteric and Allosteric Antagonists”), published in Nature, with Irina Kufareva, Ph.D., project scientist at Skaggs School of Pharmacy, and Laura Heitman, Ph.D., of Leiden University. The study’s first author is Yi Zheng, Ph.D., postdoctoral researcher also at Skaggs School of Pharmacy.
CCR2 spans the membrane of immune cells. Part of the receptor sticks outside the cell and part sticks inside. Inflammatory molecules called chemokines bind the external part of CCR2, and the receptor carries that signal to the inside of the cell. Inside the cell, CCR2 changes shape and binds other communication molecules, such as G proteins, triggering a cascade of activity. As a result, the immune cells move, following chemokine trails that lead them to places in the body where help is needed.
In this study, the researchers used X-ray crystallography to determine the 3D structure of CCR2 with two molecules bound to it simultaneously, one at each end.
That’s a huge accomplishment because, Dr. Kufareva said, “Receptors that cross the cell membrane are notoriously hard to crystallize. To promote crystallization, we needed to alter the amino acid sequence of CCR2 to make the receptor molecules assemble in an orderly fashion. Otherwise, when taken out of the cell membrane, they tend to clump together randomly.”
Drs. Handel, Kufareva, and team also discovered that the two small molecules binding CCR2 turn the receptor “off” by different, but mutually reinforcing, mechanisms. One of the small molecules binds the outside face of the receptor and blocks binding of the natural chemokines that normally turn the receptor “on.” The other small molecule binds the face of the receptor inside the cell, where the G protein normally binds, preventing inflammatory signal transmission. According to Dr. Handel, the latter binding site has never been seen before.
“It’s our hope that this new structure of CCR2 with two bound inhibitors will help optimize current and future drug discovery efforts,” added Dr. Kufareva.