As of Beijing time The data is from a third-party organization and is only for reference.
For actual information, please refer to:www.eastmoney.com
Address: 470 Wildwood Ave, Woburn, MA 01801 (America)
Tel: +1(626)986-9880
Address: Allia Future Business Centre Kings Hedges Road Cambridge CB4 2HY, UK
Tel: 0044 7790 816 954
Email: marketing@medicilon.com
Address: No.585 Chuanda Road, Pudong New Area, Shanghai (Headquarters)
Postcode: 201299
Tel: +86 (21) 5859-1500 (main line)
Fax: +86 (21) 5859-6369
© 2023 Shanghai Medicilon Inc. All rights reserved Shanghai ICP No.10216606-3
Shanghai Public Network Security File No. 31011502018888 | Website Map
Business Inquiry
Global:
Email:marketing@medicilon.com
+1(626)986-9880(U.S.)
0044 7790 816 954 (Europe)
China:
Email: marketing@medicilon.com.cn
Tel: +86 (21) 5859-1500
The dengue virus is the most common mosquito-borne viral infection in the world, infecting nearly 400 million people annually. At its most severe, the flu-like disease can be fatal. A clinical trial in which volunteers were infected with dengue virus 6 months after receiving either an experimental dengue vaccine developed by NIH scientists or a placebo injection yielded starkly contrasting results. All 21 volunteers who received the vaccine, TV003, were protected from infection, whereas all 20 placebo recipients developed infection.
The study (“The Live Attenuated Dengue Vaccine TV003 Elicits Complete Protection against Dengue in a Human Challenge Model”), published in Science Translational Medicine, underscores the importance of human challenge studies, in which volunteers are exposed to disease-causing pathogens under carefully controlled conditions.
“The findings from this trial are very encouraging to those of us who have spent many years working on vaccine candidates to protect against dengue, a disease that is a significant burden in much of the world and is now endemic in Puerto Rico,” said Stephen Whitehead, Ph.D., of NIH’s National Institute of Allergy and Infectious Diseases (NIAID). “In fact, these results informed the recent decision by officials at Brazil’s Butantan Institute to advance the TV003 vaccine into a large Phase III efficacy trial.”
Dengue fever, prevalent throughout the tropics and subtropics, is caused by any of four related dengue viruses that are spread by Aedes mosquitoes, the same mosquitoes that spread Zika virus. Most of the estimated 390 million people who are infected with dengue virus each year develop either no symptoms or a mild illness. However, some people develop serious or life-threatening illness, and large outbreaks lead millions to seek care, severely straining health care infrastructure in endemic countries.
The high prevalence of natural dengue infections in endemic areas means that many people have experienced infection at some point in the past and therefore may have immunity to the infecting serotype. A high degree of partial immunity in a population can make it difficult to assess the efficacy of any candidate dengue vaccine. A model of dengue infection in humans is one way to overcome the absence of animal models and the challenge of high background immunity in endemic areas. It is important to note that human challenge studies are conducted according to strict criteria designed to provide meticulous attention to volunteer safety and challenge studies would never be used for certain deadly pathogens, such as Ebola.
The experimental vaccine was developed primarily by Dr. Whitehead and his colleagues at NIAID’s Laboratory of Infectious Diseases. Scientists from the FDA also contributed to the vaccine’s development. The candidate vaccine is made from a mixture of four live, weakened viruses targeted to each of the four serotypes. A total of 48 healthy adult volunteers enrolled at two trial sites, the University of Vermont College of Medicine, Burlington, and Johns Hopkins Bloomberg School of Public Health, Baltimore, and were randomly assigned to receive either vaccine or placebo injection.
Six months later, 41 people returned for the challenge with dengue virus. Dr. Whitehead and colleagues also developed the challenge virus used in the trial, which is a genetically modified version of a dengue-2 serotype virus isolated in the Kingdom of Tonga in 1974. The original virus was notable for causing only mild illness. In previous human challenge trials with this modified virus, Dr. Whitehead and his coinvestigators established the virus dose that would cause all recipients to develop viremia—the presence of virus in the blood—and most to develop a mild rash.
“This modified dengue virus is very attractive for use as a challenge virus because we can use it to reliably induce dengue infection in a very high percentage of inoculated volunteers without causing serious illness,” said Dr. Whitehead. By inducing only rash (without fever) in the majority of recipients, the challenge virus mimics natural dengue virus infection, which often features such a rash, he noted.
A human challenge model of dengue infection—rather than illness—is an important characteristic, explained Anna Durbin, M.D., who led the clinical trial at Johns Hopkins.
“Because there are no specific therapies for dengue fever, it is desirable to have a challenge virus that causes infection, but does not result in significant symptoms of disease,” she said. The reliably high percentage of those who develop viremia following exposure to this challenge virus is another advantage; when most or all volunteers develop viremia or other signs of infection, clinical trials can enroll relatively small numbers of people but still achieve answers to such questions as whether a candidate vaccine protects against infection, she noted.
In this study, all 20 placebo recipients developed viremia; 16 (80%) developed mild rash and 4 (20%) had a temporary drop in white blood cell count following challenge with the virus. None of the 21 TV003 vaccine recipients developed viremia or any other sign of infection after challenge.
“We were pleasantly surprised to see that this candidate vaccine provided complete protection in everyone who received it,” said Dr. Durbin. “The dengue-2 serotype is considered the relatively weaker component in this, and other, candidate dengue vaccines, so its ability to confer protection from a challenge with dengue-2 virus was encouraging.”
Dr. Whitehead is currently developing a human challenge model using a modified dengue serotype-3 virus. This challenge virus could be used in future clinical trials to test the efficacy of candidate dengue vaccines or therapies.