As of Beijing time The data is from a third-party organization and is only for reference.
For actual information, please refer to:www.eastmoney.com
Address: 470 Wildwood Ave, Woburn, MA 01801 (America)
Tel: +1(626)986-9880
Address: Allia Future Business Centre Kings Hedges Road Cambridge CB4 2HY, UK
Tel: 0044 7790 816 954
Email: marketing@medicilon.com
Address: No.585 Chuanda Road, Pudong New Area, Shanghai (Headquarters)
Postcode: 201299
Tel: +86 (21) 5859-1500 (main line)
Fax: +86 (21) 5859-6369
© 2023 Shanghai Medicilon Inc. All rights reserved Shanghai ICP No.10216606-3
Shanghai Public Network Security File No. 31011502018888 | Website Map
Business Inquiry
Global:
Email:marketing@medicilon.com
+1(626)986-9880(U.S.)
0044 7790 816 954 (Europe)
China:
Email: marketing@medicilon.com.cn
Tel: +86 (21) 5859-1500
Scientists at the University of Alberta have developed a new method of controlling biology at the cellular level using light. The tool–called a photocleavable protein–breaks into two pieces when exposed to light, allowing scientists to study and manipulate activity inside cells in new and different ways.
First, scientists use the photocleavable protein to link cellular proteins to inhibitors, preventing the cellular proteins from performing their usual function. This process is known as caging.
“By shining light into the cell, we can cause the photocleavable protein to break, removing the inhibitor and uncaging the protein within the cell,” said lead author Robert Campbell, Ph.D., professor in the Department of Chemistry. Once the protein is uncaged, it can start to perform its normal function inside the cell.
The tool is relatively easy to use and widely applicable for other research that involves controlling processes inside a cell, according to the Investigators.
The power of light-sensitive proteins, Dr. Campbell explained, is that they can be used to study the inner workings of any living cell. For example, optogenetic tools are widely used to activate brain activity in mice.
“We could use the photocleavable protein to study single bacteria, yeast, human cells in the lab or even whole animals such as zebrafish or mice,” he continued. “To put these proteins inside an animal, we simply splice the gene for the protein into DNA and insert it into the cells using established techniques.”
The gene for the photocleavable will be made available on Addgene, a nonprofit organization established to make it easier for scientists to share plasmids.
“We want to provide new ways to learn about cell biology,” said Dr. Campbell. “I see countless potential applications for research and future investigation—from looking at which cells become which tissues in development biology to investigating the possibilities of gene-editing technology.”
The research (“Optogenetic Control with a Photocleavable Protein, PhoCl”) was published in Nature Methods.