As of Beijing time The data is from a third-party organization and is only for reference.
For actual information, please refer to:www.eastmoney.com
Address: 470 Wildwood Ave, Woburn, MA 01801 (America)
Tel: +1(626)986-9880
Address: Allia Future Business Centre Kings Hedges Road Cambridge CB4 2HY, UK
Tel: 0044 7790 816 954
Email: marketing@medicilon.com
Address: No.585 Chuanda Road, Pudong New Area, Shanghai (Headquarters)
Postcode: 201299
Tel: +86 (21) 5859-1500 (main line)
Fax: +86 (21) 5859-6369
© 2023 Shanghai Medicilon Inc. All rights reserved Shanghai ICP No.10216606-3
Shanghai Public Network Security File No. 31011502018888 | Website Map
Business Inquiry
Global:
Email:marketing@medicilon.com
+1(626)986-9880(U.S.)
0044 7790 816 954 (Europe)
China:
Email: marketing@medicilon.com.cn
Tel: +86 (21) 5859-1500
Poor diet is associated with 80% of colorectal cancer cases, but the exact pathways by which diet leads to cancer are not known. Scientists in the U.S. have identified a molecular pathway that appears to play a key role in the link between a high-fat diet (HFD) and the development of colorectal cancer. The research, led by the Cleveland Clinic’s Sheerlarani Karunanithi, and Matthew Kalady, suggests that it may one day be possible to develop drugs that reduce tumor growth associated with obesity and a diet that is high in fat.
Their research is published today, in Stem Cell Reports, in a paper titled, “RBP4-STRA6 Pathway Drives Cancer Stem Cell Maintenance and Mediates High-Fat Diet-Induced Colon Carcinogenesis.”
The Cleveland Clinic team’s review of published research indicated that high expression levels of two vitamin A signalling proteins—serum retinol binding protein (RPB4), stimulated by retinoic acid 6 (STRA6)—in colorectal cancer tumors is associated with poor prognosis, increased tumor metastasis and recurrence, and resistance to cancer therapy. The RBP4-STRA6 pathway triggers the JAK2-STAT3 signaling cascade.
The syngeneic mouse model tests the ability of model animals to fight cancer with their perfect immune system, as well as the therapeutic effects of immunotherapy. We can provide various syngeneic models to test the effectiveness of drugs according to our clients' requirements. Typical orthotopic diseases include breast cancer, lung cancer, colorectal cancer, kidney cancer, diffuse large B-cell lymphoma (DLBCL), etc., with mice, rats and hamsters as test subjects.
The researchers engineered STRA6- or RBP4-knockdown cancer cells to demonstrate that the RBP4-STRA6 pathway is important for promoting cancer cell proliferation and survival and for maintaining the expression of core stem cell transcription factors. They also found that the RBP4-STRA6 pathway plays a key role in maintaining colon cancer stem cells (CSCs), both in cell lines and in patient-derived xenografts.
The team’s previous work had shown that knocking down STRA6 in a xenograft cancer model decreased tumor growth. In a new round of studies, they injected RBP4-knockdown cancer cells into experimental mice, and found that RBP4 deficiency resulted in the development of fewer tumors, and slower tumor growth and progression.
With evidence building for the role of RBPA4-STRA6 pathway in colorectal cancer development and progression, the team turned to look at diet-related cancer. A prior study had already suggested that HFD–induced obesity leads to increased intestinal stem cells and may impact colorectal cancer risk. This finding, combined with independent research establishing a role for the RBPA4-STRA6 pathway in diet-induced metabolic syndrome, prompted the Cleveland Clinic team to look at the relationship between HFD, cancer development, and the RBPA4-STRA6 pathway.
Genomic Makeup of Colorectal Cancers Predicts Immune System Ability to Fight Tumors
Role of STING Protein in Development of Colorectal Cancer
Microbiome Link with Colorectal Cancer Drug Toxicity Points to Predictive Tests and Prevention
They injected either STRA6-deficient colorectal cancer cells or unmodified cancer cells into obesity-resistant mice fed either a normal diet or an HFD. HFD mice injected with unmodified cancer cells exhibited significantly increased tumor growth compared with mice fed a normal diet. In contrast, there was no relative increase in tumor growth among HFD animals receiving the STRA6-deficient tumor cells.
“Our data clearly indicate that RBP4-STRA6 pathway is necessary for the optimal expression of stem cell markers such as NANOG, SOX2, and LGR5, and thereby for maintaining the colon CSC pool,” the authors conclude in their published paper. “We have known the influence of diet on colorectal cancer,” commented Matthew Kalady, M.D., colorectal surgeon, and co-director of the Cleveland Clinic Comprehensive Colorectal Cancer Program. “However, these new findings are the first to show the connection between high-fat intake and colon cancer via a specific molecular pathway. We can now build upon this knowledge to develop new treatments aimed at blocking this pathway and reducing the negative impact of a high-fat diet on colon cancer risk.”
“The interesting finding here is that the high fat diet-induced effects appear to also involve the stem cell program, which is interesting for tumor growth and has implications on therapies, as tumor stem cells are also therapeutically resistant,” the authors told GEN. “In terms of treatments, what we might envision is targeting a new component of the signaling axis we identified to reduce cancer growth. The pathways we have identified are known to control many aspects of cell behavior, but the input to these signaling programs is new and may represent a possible target. In terms of next steps, one would be to see whether this can be applied to other obesity-driven tumors. Can lessons from colon cancer be leveraged to other tumor types? We also are interested in inhibiting this new signaling axis as well as trying to understand more about this signaling program, as we may be able to identify signaling nodes that can be efficiently targeted.”